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Abstract

Experimental and numerical studies on the effects of the Grashof number Gr, and the container height H on the air flow pattern and the
bifurcation process to chaos of the roll-cell pattern in a confined rectangular container heated locally from below are presented. The dimensionless
container size L

D
: W

D
: H

D
is 7 : 3 : arbitrary value, where H is the height of the container and D is the width of the centrally heated bottom wall

in the short sidewall direction. The flow pattern map which depends on Gr and H/D was obtained mainly by experimentation. Two-dimensional
(2D) rolls with their axes parallel to the long sidewalls, in which fluid descending along both cooled long sidewalls is maintained in the same
direction, are always produced above both adiabatic bottom walls next to the centrally heated bottom wall. In addition to these two rolls, four
types of convective flow patterns above the centrally heated bottom wall are observed: one pair of steady 2D rolls with their axes parallel to
the long sidewalls or a similar pair of steady 3D roll-cells in which cell structures exist within the rolls, unsteady 3D cells, and 3D oscillatory
flow. For Gr = 1.8 × 106 and H/D = 0.20, the 3D roll-cell pattern changes directly from time-dependent sinuous oscillatory motion to chaotic
flow. Two positive Lyapunov exponents appear, and the Lyapunov dimension is about 3.7, indicating that this flow may be strongly chaotic. This
non-cascade-type transition is due to the sudden flow pattern change from the single pair of the 3D roll-cell to the chaotic cell structure.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Recently, an idea has been proposed to submerge a large
amount of CO2, which is a major cause of global warming, into
the deep sea [1,2]. This idea involves sherbet-like clustered CO2
(liquid CO2 is trapped within sherbet-like water under the con-
ditions of low temperature and high pressure) being transported
to the bottom of the deep sea by pipe line, and then pooled at
the bottom of a ravine as shown in Fig. 1(a). The clustered CO2
has a larger density than seawater of over 3000 m. It would be
necessary to keep the clustered CO2 for a long period of time in
the deep sea, but there is concern that unsteady strong vortices
around a transport pipe would enhance convective diffusion of
the clustered CO2 in the region near the pipe outlet. The flow
and heat transfer performance around a cold horizontal cylin-
der placed near the bottom of the sea is shown schematically in
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Fig. 1(b-1) and can be roughly understood by the natural con-
vective flow around a hot horizontal cylinder placed near a flat
ceiling as shown in Fig. 1(b-2). These two flow systems are
the approximate adverse flow phenomena which are caused by
reversing both the vertical axis and temperature. The real inter-
facial boundary shown in Fig. 1(b-1) is a sherbet-like clustered
CO2, but the boundary of Fig. 1(b-2) is a liquid–solid wall.

A local electric power company in Japan has estimated the
diameter of the actual transport pipe to be about 1 m and the
average velocity in the pipe to be about 3 m s−1 in order to
dispose the clustered CO2 of 2.5 ton s−1 into the deep sea. The
expected temperature difference between the seawater around
the pipe and inside the pipe would be estimated to be within
several degrees, but many unsolved problems remain in order
to realize the successful disposal of clustered CO2 in the deep
sea [2].

The former experimental research of Ref. [3], which deals
with a hot horizontal cylinder placed near a flat ceiling for air
flow as shown in the upper part of Fig. 2, reveals that three
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Nomenclature

D width of the heated bottom wall in the short sidewall
direction (Fig. 3), 76 mm

DL Lyapunov dimension
dm embedding dimension
Gr Grashof number, gβ(Tbh − Ttc)D

3/ν2

H height of the container which is able to be set
an arbitrary value

L length of the container, 7D = 532 mm (length of
the long sidewall)

L
D

: W
D

: H
D

dimensionless container size, 7 : 3 : arbitrary
value

P pressure
Pr Prandtl number, ν/α

t time
T temperature
u,v,w x,y, z components of the velocity
W width of the container, 3D = 228 mm (length of

the short sidewall)
x, y, z coordinates (Fig. 3), x = y = z = 0; bottom

left-side corner of the container

Greek letters

α thermal diffusivity
β coefficient of thermal expansion
�τ time interval of sampling
�T temperature difference between the top cooled wall

and the heated bottom wall, Tbh − Ttc
Θ non-dimensional temperature, (T −Tm)/(Tbh −Ttc),

where Tm = (Tbh + Ttc)/2
λi Lyapunov exponent (i = 1, . . . , dm)

ν kinematic viscosity

Subscripts

bh bottom, heated wall
ba bottom, adiabatic wall
f fluid
lw long sidewall
m mean temperature between the top cooled and

bottom heated walls
sw short sidewall
tc top, cooled wall

Fig. 1. Proposal for the disposal of clustered CO2 in the deep sea, and the concern of the diffusion problem of CO2.
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Fig. 2. Schematic drawing of the present flow system which roughly simulates
the former flow system of a hot horizontal cylinder placed near a flat ceiling.

types of flow patterns are observed depending on the Grashof
number Gr and the dimensionless distance H/D between the
ceiling and the cylinder (D is the diameter of the heated cylin-
der in this flow system). These flow patterns are the 2D steady
flow, low dimensional chaotic flow, and the 3D oscillatory flow.
However, the effect of the Prandtl number Pr on the flow pat-
tern and the bifurcation process to chaos could not be revealed.
Furthermore, it is difficult to simulate the transition process to
chaos around a hot horizontal cylinder placed near a flat ceiling
in an infinite flow medium. In order to analyze the flow system
precisely, for example, it is necessary to use the bipolar coor-
dinate transformation. Then the circumference of a cylinder is
converted into a line, and a fine grid near the cylinder and a
coarse grid far from the cylinder could be set.
The aim of the present experimental and numerical study
is to investigate the flow pattern formation and the transition
process to chaos of roll-cells in terms of air flow (Pr = 0.71)
in a confined rectangular container heated locally from below
as shown in the lower part of Fig. 2, which roughly simulates
the hot horizontal cylinder placed near a flat ceiling as shown in
the upper part of Fig. 2. That is, this flow system focuses only
on the narrow region between the heated cylinder and the ceil-
ing which is enclosed by the dotted rectangular box as shown
in the upper part of Fig. 2. It is thus expected that the transi-
tion process to chaos around the heated cylinder suspended in
an infinite flow medium near a flat ceiling could be basically
understood by analyzing the present flow system. Furthermore,
to reveal the transition process of a roll-cell pattern to chaos in
a large aspect ratio container such as the one used in this flow
system, in which higher order chaotic flow may be produced,
would be an interesting finding from the view point of basic
heat transfer science.

Flow pattern formation is determined by non-linear as-
pects of the system under study, and also the Prandtl number
Pr mainly governs the characteristics of non-linearity in the
flow system. Therefore, the onset of the time dependence and
the transition to chaos are especially strongly dependent on
Pr [4,5].

Natural convective flow above horizontal heated surfaces
appears in a wide variety of physical environments such as
thermal plumes and geophysical phenomena. Therefore, a large
number of Rayleigh–Bénard convections for both infinite layers
and confined containers heated from below have been stud-
ied theoretically, experimentally and numerically. For example,
Cross and Hohenberg [6] have extensively clarified the flow
pattern formation and the transition process to chaos, both of
which depend on Ra, Pr, and geometrical constraints.

On the contrary, only a few studies have examined flow
pattern formation and heat transfer performance in a confined
container heated locally from below. To reveal the change of
flow and heat transfer performances affected by a wall of a con-
fined container heated locally from below is important from the
standpoint of industrial engineering in relation to the cooling of
electronic devices. Sezai and Mohamad [7] numerically studied
natural convection in air due to a discrete flush-mounted rectan-
gular heat source on the bottom of a horizontal container. Aydin
and Yang [8] simulated the steady natural convection heat trans-
fer of air in a 2D square container with localized heating applied
by a strip placed at the bottom center wall and by applying sym-
metric cooling from the side walls. Their analysis included the
influence of the heated strip width and Rayleigh number on the
fluid flow and heat transfer. Another similar industrial appli-
cation, for example, is the melting of glass in which horizontal
heated surfaces play a significant role in a rectangular open tank
with a heated strip of width D at the bottom of the tank. Sar-
ris et al. [9] investigated the effects of the Rayleigh number, the
geometry of the heated strip and the tank on flow patterns and
heat transfer by numerical simulation. Nevertheless, the tran-
sition process to chaos for horizontal containers heated locally
from below has not been studied thus far.
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2. Experimental methods and numerical simulation

2.1. Description of experiment

Fig. 3 shows a schematic drawing of the experimental appa-
ratus and the coordinate system. The dimensions of the rectan-
gular container are L = 532 mm (long sidewall), W = 228 mm
(short sidewall), and the height H mm. The center part of one-
third of the bottom wall in the short sidewall direction, of which
width D is 76 mm and length L is 532 mm, was heated at
constant temperature Tbh. The bottom heated wall was made
of a 10 mm thick copper plate heated by a thin stainless steel
foil, 30 µm thick, insulated from the copper plate. The foil was
electrically heated by a constant direct current. The isother-
mal boundary condition of the copper surface was checked by
measuring the surface temperature at several different positions
by attaching a Cu–Co thermocouple of diameter 0.1 mm, and
the surface temperature was kept uniform and constant within
0.2 K. Each one-third of the bottom wall next to the centrally
heated bottom wall, which was made of foam glass, was adia-
batic. The top wall and the four sidewalls were cooled at con-
stant temperature Ttc by using a water reservoir made of 5 mm
thick copper plate. The entire experimental setup consisted of
two parts. One is the fixed cooled reservoir of top and four side
walls, and the other is the locally heated bottom wall. The bot-
tom wall was placed on the traversing system, and then the
container height of H could be adjusted within the traversing
precision of a 0.1 mm interval in the vertical direction.

The dimensionless container size L/D : W/D : H/D is
7 : 3 : arbitrary value, and the height H/D was able to be
set below 0.4. Experiments were carried out with air (Pr =
0.71) as the working medium at Grashof numbers ranging
from 3.0 × 105 (�T � 5 K) to 1.8 × 106 (�T � 30 K). The
Grashof number was set by changing the temperature differ-
ence, �T = Tbh − Ttc, between the cooled top wall Ttc and the

Fig. 3. Schematic drawing of the experimental apparatus and coordinate system.
heated bottom wall Tbh. Physical properties were estimated at
the mean temperature Tm.

In order to clarify the unsteady characteristics, an instanta-
neous flow visualization experiment was conducted using in-
cense smoke. The sensor used to measure the air temperature
was a thermocouple. The diameter of its copper and constan-
tan wires was 50 µm, and the response time was approximately
0.2 s. This response time is sufficient to capture the chaotic be-
havior as shown in Figs. 7 and 8, because chaotic fluctuation
frequencies are below about 0.5 Hz. The power spectrum was
obtained using an FFT analyzer.

Phase trajectory and Lyapunov exponents λi (i = 1,2, . . . ,

dm) were obtained using the time series of the temperature at
the center part of the container by using a personal computer.
The Lyapunov exponents λi represent the time-development
of the displacement vector between two very adjacent points
in the phase space. When one or more positive exponents are
obtained, the flow may be characterized as chaotic with the
magnitude of the exponents indicating the time scale for pre-
dictability. Also the Lyapunov dimension DL, which shows
the complexity of the attractor, was calculated from these ex-
ponents. The Lyapunov exponents could be calculated by the
method proposed by Sano and Sawada [10].

The sampling time �τ was set to 0.01953 s by using an
analog to digital converter with 16 bit resolution. An attractor
was reconstructed in a dm-dimensional phase space by using
131 072 data points. Delay time τdel is chosen as the lag time
at which the autocorrelation function of the time series falls
to nearly zero. Then the Lyapunov exponents λi was obtained
from the orbits of points evolving in the time interval of τdev.
A detailed description of the analyzing method is given in a
previous published paper of Ref. [11]. The entire experimen-
tal apparatus was maintained at the same uniform and con-
stant temperature within 1 K while each surface temperature
was monitored during the entire acquisition time of 43 minutes
(131 072 data × 0.01953 s).

2.2. Numerical modeling

The non-dimensionalized governing equations for unsteady
3D natural convection flow under the usual assumptions of a
Boussinesq fluid, and negligible viscous dissipation and pres-
sure work can be written in Cartesian coordinates as follows:

∂u′

∂x′ + ∂v′

∂y′ + ∂w′

∂z′ = 0 (1)

Du′

Dt ′
= −∂P ′

∂x
+ Pr · ∇2u′ (2)

Dv′

Dt ′
= −∂P ′

∂y′ + Pr · ∇2v′ (3)

Dw′

Dt ′
= −∂P ′

∂z′ + Pr · ∇2w′ + Gr · Pr2 · Θ (4)

DΘ

Dt ′
= ∇2Θ (5)

with substantial derivative
D

′ = ∂

′ + u′ ∂

′ + v′ ∂

′ + w′ ∂

′
Dt ∂t ∂x ∂y ∂z
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The x, y, and z coordinates were non-dimensionalized by D

which is the width of the heated bottom wall in the short side-
wall direction, the velocities were scaled by α/D, the time by
D2/α, and the pressure by ρα2/D2, respectively, where α is
the thermal diffusivity, and ρ is the density of fluid. The dimen-
sionless temperature was defined by Θ = (T −Tm)/(Tbh −Ttc),
where Tm = (Tbh + Ttc)/2. Gr is the Grashof number, and Pr is
the Prandtl number.

Approximate forms of the Boussinesq equations were ob-
tained using a control volume method. The convective terms
were discretized using a hybrid scheme (a first order accurate
upwind difference scheme combined with second order cen-
tral differencing). The SIMPLE algorithm [12] was used to
solve these equations. In order to determine possible 3D effects,
the entire enclosure was treated as the full computational do-
main. A grid system with uniform spacing, whose lattice point
number was 35 (short sidewall in the x direction) × 53 (long
sidewall in the y direction) ×13 (vertical sidewall in the z di-
rection), was used for the coarser grid. A larger 53 × 79 × 19
grid was employed for unsteady 3D cells at Gr = 1.8 × 106 and
H/D = 0.204 in region III of Fig. 4. Almost the same results
were obtained for these two mesh sizes, and the calculated flow
pattern was qualitatively in agreement with the experimental re-
sult as shown in Fig. 7(a-2). For these reasons, a 35 × 53 × 13
uniform grid was selected for all calculations in the present
study using a personal computer. It took over 20 hours of CPU
time for the chaotic flow to be calculated as shown in Fig. 8 in
the case of the 35 × 53 × 13 grid system.

Boundary conditions were u′ = v′ = w′ = ∂P ′
∂n′ = 0 at all

walls, and the wall temperature satisfied Θbh = 0.5 at the heated
bottom wall, ( ∂Θ

∂z′ )ba = 0 at the insulated bottom wall, and
Θtc = Θsw = Θlw = −0.5 at the top wall and sidewalls.
In order to clarify the effects of the sidewall temperature
condition on the flow pattern, calculation was performed for
the adiabatic sidewall condition at Gr = 1.8 × 106 and H/D =
0.200 which corresponded to the results for constant tempera-
ture sidewall conditions shown in Fig. 5. Both calculated cell
sizes within rolls were almost the same except only near the
short sidewalls. Therefore, a constant and uniform sidewall
temperature condition was used in this study to facilitate the
comparison with experiments in which four sidewalls were
cooled by using a water reservoir.

The initial conditions were those of a stagnant fluid with the
temperature set to Θf = −0.5. Convergence within each time
step is determined through the sum of the absolute relative er-
rors for each dependent variable in the entire flow field for all
calculations:

∑
i,j

|φk+1
i,j − φk

i,j |
|φk

i,j |
� 10−5

where, φ represents the variables u′, v′, w′ or Θ , the super-
script k refers to the iteration number and the subscripts i and
j refer to the space coordinates. The dimensionless time step
�t ′ was 0.0002 for the unsteady calculations. The time series
of the temperature at the center grid point of the container were
recorded and analyzed to obtain the phase trajectory and the
power spectrum. All calculations were carried out with double
precision.

Velocity vectors and isotherms in Figs. 5–8, grid lines of the
velocity vectors and isotherms do not correspond to the number
of grid lattices in the numerical simulation due to the used flow
visualization program.
Fig. 4. Flow pattern map.
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Fig. 5. Flow characteristics of a steady pair of roll-cells at Gr = 1.8 × 106 and H/D = 0.200 in region II which was obtained by numerical simulation.

Fig. 6. Flow characteristics of the periodic 3D roll-cell pattern at Gr = 1.8 × 106 and H/D = 0.203 which was obtained by numerical simulation.
3. Results and discussion

3.1. Flow pattern map

Fig. 4 shows the categorization of flow patterns and their
dependence on the Grashof number Gr and the dimensionless
container height H/D obtained mainly by experimentation.

2D rolls with their axes parallel to the long sidewalls, in
which fluid descending along both cooled long sidewalls is
maintained the same direction, are always produced above both
adiabatic bottom walls next to the centrally heated bottom wall
as shown in the schematic drawings of the flow pattern map in
Fig. 4. In addition to these two large rolls, four types of convec-
tive flow patterns above the heated bottom wall are observed:
one pair of steady 2D rolls with their axes parallel to the long
sidewalls only for Gr < 6 × 105 and H/D < 0.25 or a sim-
ilar pair of 3D roll-cells in which cell structures exist within
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Fig. 7. Chaotic flow characteristics at Gr = 1.8 × 106 and H/D = 0.20 which was obtained by experimentation.
rolls, which is clearly shown in the flow visualization photo of
Fig. 7(a-1), mainly for high Gr numbers and large H/D in re-
gion II, unsteady 3D cells in region III, and 3D oscillatory flow
in region IV. The 3D oscillatory flow, which ascends from the
central part of the heated bottom wall and descends along both
long sidewalls, begins to oscillate extensively from side to side
between top and bottom walls.

Fig. 5 shows the flow characteristics of a steady pair of roll-
cells at Gr = 1.8 × 106 and H/D = 0.200 in region II of Fig. 4
which was obtained by numerical simulation. Figs. 5(a) and
(b) are the isotherms and velocity vectors on the mid-plane of
z/D = 0.100, and Fig. 5(c) is the isotherms in the x–z cross-
section at y/D = 3.5, but the container size ratios of length,
width and height are not to scale. A steady roll-cell pattern with
seven similar dimensional cells symmetrically aligned in series
above the heated bottom wall is observed.

3.2. Transition to chaos of a steady 3D roll-cell pattern at
Gr = 1.8 × 106

The representative transition process to chaos from a sin-
gle pair of a steady 3D roll-cell pattern in region II to an
unsteady 3D cell pattern at Gr = 1.8 × 106 in region III of
Fig. 4 was investigated both numerically and experimentally.
One pair of a steady 3D roll-cell patterns at H/D = 0.200 in
the enlargement of region II of Fig. 4 begins to exhibit time-
dependent periodic flow at H/D = 0.203, and then a succes-
sive bifurcation occurs from the periodic flow directly into the
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3D chaotic cell flow at H/D = 0.204 in region III by numeri-
cal simulation. Fig. 6 shows the time-dependent periodic flow
characteristics at H/D = 0.203. Figs. 6(a) and (b) are the in-
stantaneous isotherms and velocity vectors on the mid-plane of
z/D = 0.1015. Fig. 6(c) is the phase trajectory, and Fig. 6(d) is
the power spectrum, respectively.

This unsteady 3D roll-cell pattern was changed from the
steady 3D roll-cell pattern with seven same dimensional cells
symmetrically aligned in series above the heated bottom wall as
shown in Fig. 5. These unsteady seven cells were notably dif-
ferent in size from the steady seven cells as shown in Fig. 5(a).
The roll-cell begins to oscillate with a spectral peak frequency
of f1 = 0.286 Hz, and the relative temperature fluctuation in-

tensity (
√

(Tf − T̄f )2/T̄f ; Tf is the instantaneous fluid tem-

perature, and T̄f is the local time-averaged fluid temperature)
which is about 1%. From the results of the time series analysis,
Hopf bifurcation occurs clearly at H/D = 0.203.

Fig. 7 shows chaotic flow characteristics of 3D cells at Gr =
1.8 × 106 and H/D = 0.20 in region III of Fig. 4 which was
obtained by experimentation. These results correspond to the
unsteady 3D cells at H/D = 0.204 just after the transition to
chaos obtained numerically and are shown in Fig. 8.

Fig. 7(a) shows instantaneous flow visualization photos on
the mid-plane of z/D = 0.10 above the heated bottom wall.
Photos are shown only in the center part of the total heated bot-
tom wall, which corresponds to the area of D (width of the
heated bottom wall) × 2D (length along the long sidewall).
One pair of 3D sinuous oscillatory roll-cells (cell structures ex-
ist within the roll) with several necked parts is shown by several
arrows in Fig. 7(a-1), and this pair changes to unsteady 3D cell
structures as shown in Fig. 7(a-2) within a few seconds after the
height was set to 0.20. Each cell size is almost the same as the
width of the heated bottom wall D and is aligned in a zigzag
pattern along the heated bottom wall.

Fig. 7(b) is the Lyapunov exponents λi and Lyapunov di-
mension DL, when the embedding dimension increases from
dm = 5 to dm = 7. The sign ± in the Lyapunov exponents
λi is calculated from several runs with different parameters
τdev, εr , N within the following ranges. The developing time is
3�τ � τdev � 6�τ for sampling time �τ = 0.01953 s. When
the extent of the phase space is normalized as unity, the radius
of a small ball is 0.03 � εr � 0.06, and the number of the phase
points included in it is 10 � N � 30. Two positive Lyapunov
exponents appear and DL is about 3.7, therefore, this flow may
be strongly chaotic. This non-cascade-type transition is due to
the sudden flow pattern change from one pair of 3D sinuous
oscillatory roll-cells, in which cell structures exist within rolls
shown by the flow visualization photo of Fig. 7(a-1), to un-
steady 3D cells of Fig. 7(a-2).

Flow pattern formation and time dependence in non-equili-
brium dissipative systems such as convection in a horizontal
fluid layer heated from below are problems of considerable in-
terest, both from a practical point of view and as unresolved
problems in physics. The dependence of pattern selection and
time dependence on the shape and dimension of the container
(i.e. the aspect ratios) and on the Rayleigh and Prandtl num-
Fig. 8. Chaotic flow characteristics at Gr = 1.8 × 106 and H/D = 0.204 which
was obtained by numerical simulation.

bers have been systematically investigated for small containers.
Changes in the flow pattern are severely restricted by the bound-
aries, and the flow becomes time dependent in a manner which
is similar to that observed in dynamical systems of low dimen-
sionality [5].

On the other hand, spatially extended dynamical systems
such as large containers and infinite fluid layers exhibit complex
transitional behavior. The stability of parallel-roll convection
was demonstrated as a function of Rayleigh number and roll
wavenumber for various Prandtl numbers in a laterally infinite
fluid layer, and the strong dependence of the instabilities on
Pr was based on the result of the linearized analysis [4]. Fur-
thermore, for large containers such as those used in this flow
system, the initial time dependence of the roll pattern on the
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Fig. 8. (continued)
timescale of the horizontal-diffusion time is typically in slow
motion, which is opposite that of the vertical-diffusion time is
in rapid motion [13]. This slow motion makes it difficult to dis-
tinguish clearly other changes and instabilities in the pattern.
Therefore, if the onset of chaotic time dependence could be
observed, it would be difficult to judge whether the time depen-
dent flow is a chaotic or a transient flow to another spatial flow
pattern. Analysis of dynamical quantities such as Lyapunov di-
mensions and exponents plays an important role in judging the
existence of chaotic attractor and its complexity. The Lyapunov
dimension of the chaotic cell structure is 3.7 in the present flow
system, and therefore this chaotic flow may be judged to be in-
dependent of a transient flow of roll-cell structure to another
spatial flow pattern.

When a container is sufficiently large for one to observe
changes in the spatial flow pattern well before the onset of
chaotic time dependence, complex behavior in both space and
time was observed [14]. But this flow system is clearly different
from the spatiotemporal chaos, because the spatial flow pattern
before the transition to chaotic flow as shown in Fig. 5 is very
regular.

Fig. 8 shows calculated chaotic flow characteristics at Gr =
1.8 × 106 and H/D = 0.204 in region III of Fig. 4, which
correspond to the experimental characteristics just before the
transition to chaos at H/D = 0.20 as shown in Fig. 7. Fig. 8(a)
shows instantaneous velocity vectors and isotherms at various
cross-sections, but the container size ratios of length, width and
height are not to scale. Fig. 8(b) shows the flow characteris-
tics.

Figs. 8(a-1) and (a-2) show the velocity vectors and iso-
therms in the x–z cross-section at y/D = 3.5. Fig. 8(a-3)
shows the isotherms in the y–z cross-section at x/D = 1.5,
and Fig. 8(a-4) shows the isotherms on the mid-plane of
z/D = 0.102, respectively. Fig. 8(a-5) reveals the comparison
of 3D cells between the calculated result in the region between
2.5 < y/D < 5.5 and 1.0 < x/D < 2.0 above the heated bot-
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tom wall and the corresponding flow visualization photo of
Fig. 7(a-2).

From the velocity vectors of Fig. 8(a-1) and isotherms of
Figs. 8(a-2), (a-3) and (a-4), several numbers of large 3D cells,
which descend in the center and ascend around the outer part
of each cell are formed, these cells are aligned in a zigzag pat-
tern with smaller cells between them along the center part of
the long heated bottom wall. In addition to these cells, large 2D
rolls with their axes parallel to the long sidewalls, which dif-
fer in their circulation direction above both adiabatic bottom
walls, are produced. When the instantaneous flow visualiza-
tion photo on the mid-plane of z/D = 0.10 on the right-side
of Fig. 8(a-5) is compared to the isotherms obtained numeri-
cally at H/D = 0.102 on the left-side of Fig. 8(a-5), almost the
same cell-pattern was obtained, but the simulated cell size is
smaller than that of the experimental observation. The differ-
ence between these two cell sizes is due to the lack of spatial
resolution in the numerical simulation. However, these numer-
ical results have qualitatively elucidated the nature of the bi-
furcation process to chaos observed in the experimentation as
shown in Fig. 7(a). Fig. 8(b-1) shows the time series of fluid
temperature and its power spectrum, and Fig. 8(b-2) shows the
phase trajectory. A considerable number of modes may be rel-
evant in the transition due to the fact that the power spectrum
is continuous and below about 0.5 Hz, and the trajectory in the
phase space follows very complicated orbits.

4. Conclusion

Results have been presented of experimental and numeri-
cal studies concerning the transition from a roll-cell pattern to
chaotic flow in a confined rectangular container heated locally
from below. Experiments were performed with air (Pr = 0.71)
at Grashof numbers ranging from 3.0 × 105 to 1.8 × 106. The
representative length scale is defined by width D of the locally
heated bottom wall in the short sidewall direction.

• The flow pattern and the transition process to chaos of cer-
tain buoyant container-flow problems heated locally from
the bottom wall are significantly influenced by the thermal
boundary conditions of the bottom wall.

• Four types of flow patterns above the locally heated bot-
tom wall are observed for air flow depending on Grashof
number Gr and dimensionless container height H/D be-
tween the cooled top wall and the locally heated bottom
wall. These patterns consist of one pair of steady 2D rolls
with their axes parallel to the long sidewalls or a similar
pair of 3D roll-cells in which cell structures exist within
rolls, unsteady 3D cells, and 3D oscillatory flow.

• The 3D roll-cell pattern changes directly from time-
dependent periodic motion to chaotic flow at Gr = 1.8 ×
106 and H/D = 0.20 experimentally. This non-cascade-
type transition is due to the sudden flow pattern change
from sinuous oscillatory 3D roll-cells to chaotic 3D cells.
Two positive Lyapunov exponents appear, and the Lya-
punov dimension is about 3.7. These transitional charac-
teristics to chaotic flow are qualitatively obtained by nu-
merical simulation at H/D = 0.204.
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